

Contributions to HiLiftPW-2 from Metacomp Technologies, Inc.

Y. Allaneau, U. Goldberg, S. Chakravarthy, O. Peroomian Metacomp Technologies, Inc.

DLR F11 Flow Predictions

Solver configuration

- CFD++: Unified Grid Finite Volume solver
- Unstructured Mixed-Element cell based
- 2nd order HLLC Riemann solver
- Preconditioned
- Multigrid Acceleration
- Fully turbulent

Cases studied

C1 (Grid convergence):

7° and 16° k-ε-Rt, SA, SST Effects of preconditioner

C2a and C2b (Polar):

SA

DLR F11 Flow Predictions

Turbulence Model	Freestream Turbulence Level (%)	Eddy viscosity Ratio (μ_t/μ)	Remarks
k-ε-Rt	0.05	20	$\begin{array}{c} \text{no freestream} \\ \mu_t \text{ decay} \end{array}$
S-A		1	no freestream μ_t decay
SST	0.05	20	

DLR F11 Flow Predictions

Solution information (Case 1 medium grid, 32M cells, unstructured hexa)

Hardware / platform:

Up to 14 nodes used

Each node: 2 AMD Opteron 6172 (12 cores), 128 GB ram

Up to 336 cores used

Operating System: Centos/Redhat OS 5.5

Compiler: gcc 3.2.3

• **Run Time:** 700 steps, incl. files outputs, 7.5 hours (288 cores) **Memory used:** ~560 MB/process, 107 GB total (288 cores) Lift and drag converged in 500 iterations or about 5 hours

Typical convergence history with k-ε-Rt model

- Hexa mesh (coarse, medium, fine grids)
- ICEM (A_uns_1to1_Case1Config2_v2)

MESH	No. of cells	
Coarse	9,556,725	
Medium	31,998,440	
Fine	100,561,536	

Forces and Moments convergence

 $\alpha = 7^{\circ}$, k- ϵ -Rt

-Cp plots, C1, k- ε -Rt at $\alpha\!=\!7^\circ$

-Cp plots, C1, SA at $\alpha = 7^{\circ}$

-Cp plots, C1, SST at $\alpha\!=\!7^\circ$

Case 1 – Grid sensitivity Velocity profiles 7°

SST

Case 1 – Grid sensitivity – k-ε-Rt

Case 1 - Grid sensitivity - SA

Case 1 - Grid sensitivity - SST

Case 1 – Effect of preconditioning

- As a unique exercise for this Workshop we ran both preconditioned and non-preconditioned modes to answer the often asked questions:
 - What is the effect of pre-conditioning?
 - 2. Which approach is better?
- Both modes were used on coarse, medium and fine grids
- As expected, preconditioned results show better and faster grid convergence
- On the finest meshes, non-preconditioned results edge toward the preconditioned ones as seen in the following slides

Case 1 – Effect of preconditioning

SA Model, Fine mesh

Non-preconditioned

Preconditioned

Upper Cp

Case 1 – Effect of preconditioning

Forces and Moments convergence

Case 2 – Forces and Moments

- Prisms/Tets mesh (medium grid)
- Pointwise (C_uns_mix_Case2Config4_v1)

MESH	No. of cells
Medium	149,963,804

Case 2 – Forces and Moments

S-A Model

Forces and Moments

Case 2a (Low Re) – τ_{χ}

Case 2a (Low Re) - 18.5°

Case 2a (Low Re) - Velocity profiles

1.40 0.00

0.87

1.60 - 0.20

0.33

0.87

1.07

 u/U_{∞}

1.60 0.00

0.53

1.07

1.07

 u/U_{∞}

 u/U_{∞}

Case 2b (High Re) – Forces and Moments

Conclusions

- CFD++ used in various configurations for C1, C2a and C2b.
 - Effects of turbulence model (k-ε-R_t, SST and S-A)
 - Effects of preconditioning (RHS)

 None is ever a clear outlier in the workshop
- Able to observe grid convergence with all turbulence models k-ε-R_t exhibits the least dependence on the grid
- Usefulness of preconditioning at low speed demonstrated
- High Re predictions closer to experiment than Low Re, might be linked to transitional effects being ignored
- → More results, complete Cp plots and velocities profiles in paper